Gas Law Simulation A Criteria

I. Data Collection

A. $1=\mathrm{m}, 2=\mathrm{n}, 3=\mathrm{o}, 4=\mathrm{p}$. [Particles, atoms, molecules], [collisions, crash], [velocity, speed], [energy, force].
\qquad a. particles are moving in straight lines
b. particles are colliding with walls
c. particles are colliding with each other
d. particles collide or crash
____e. speeds of particles are not the same
f. speed(s) of particle(s) change(s)
g. force or energy of collision influences speed of particles.

B.

OBSERVATION (graph)
___ a. straight line (between collisions)
b. angle of collision with walls

EXPLANATION:
___c. speed changes as a result of collision with other particles
d. direction changes

MISCONCEPTION:
e. speed changes as a result of collision with wall

C.

a. organized

LABELS (incl. correct units)
__b. 1.01 atm (pressure)
c. 22.4 L (volume)
d. 275.25 K (temp.)
D. (pt. 1)
a. different particles have different speeds
b. speed(s) of particle(s) change(s)
c. average speed is constant
D. (pt. 2)
a. draw graph
b. label axis (x: speed, y : number of particles)
c. label line (average speed)
d. label blocks (number of particles in a particular speed)

E.

OBSERVATION

___ a. as pressure increases, volume decreases, or vice versa
b. no changes in velocity distribution or average velocity
\qquad c. number of collision increases or velocity changes more often when
volume decreases.
EXPLANATION
____d. pressure increases because collision with walls increases
e. pressure increases because collision increases

MISCONCEPTION
___f. average speed changes
____g. pressure increases because collision between particles increases

II. Data Analysis

a. correct graph
b. pressure and volume are inversely proportional (in word)
c. $\mathrm{pV}=$ constant or $\mathrm{p} 1 / \mathrm{V}$

MISCONCEPTION
___d. wrong graph
e. $p=1 / V$
\qquad f. $y=a x+b$

III. Interpretation and Conclusions

A.

B.
a. show two situations with different volumes and same number of particles
b. explain that the collisions in a unit time are different
c. (because) average speeds are the same but volumes are different
d. two situations with different volumes and different number of particles
C.
a. correct answer (e.g. 0.226 atm and 275 K) extrapolated from graph that $\mathrm{pV}=\mathrm{c}=22.6$
b. correct answer from $\mathrm{pV}=\mathrm{nRT}$ or $\mathrm{p}_{1} \mathrm{~V}_{1}=\mathrm{p}_{2} \mathrm{~V}_{2}$
c. correct answer only

