CHEM 1014
Exam III
John III. Gelder
November 18, 1999

Name \qquad
TA's Name \qquad
Lab Section \qquad

INSTRUCTIONS:

1. This examination consists of a total of 7 different pages. The last page includes a periodic table and some useful information. All work should be done in this booklet.
2. PRINT your name, TA's name and your lab section number now in the space at the top of this sheet. DO NOT SEPARATE THESE PAGES.
3. Answer all questions that you can and whenever called for show your work clearly. Your method of solving problems should pattern the approach used in lecture/discussion. You do not have to show your work for the multiple choice (if any) or short answer questions.
4. Point values are shown next to the problem number.
5. Budget your time for each of the questions. Some problems may have a low point value yet be very challenging. If you do not recognize the solution to a question quickly, skip it, and return to the question after completing the easier problems.
6. Look through the exam before beginning; plan your work; then begin.
7. Reldx and do well.

TOTAL
SCORES
Page 2 Page $3 \quad$ Page $4 \quad$ Page $5 \quad$ Page 6
$\overline{(100)}$
(5) 1. Complete the following table

Substance	\# valence electrons
K	
S	
Ag	
N^{3-}	
Na^{+}	

(10) 2. Predict the formula of the compound formed between the following pairs of elements.
a) $\quad \mathrm{Mg}$ and O_{2}
b) $\quad \mathrm{Al}$ and sulfur \qquad
c) potassium and bicarbonate \qquad
d) barium and sulfate \qquad
e) $\quad \mathrm{C}$ and Cl_{2}
(14) 3. Complete the following table;

Name of the compound	Formula of the compound
Sodium nitrite	
	$\mathrm{Ba}(\mathrm{OH})_{2}$
ammonia	
	LiI
Zinc phosphate	$\mathrm{Na}_{2} \mathrm{CO}_{3}$
	MgSO_{4}

(20) 4. Answer each of the following
a) Provide a brief description of what is meant by the term cation.
b) Provide a brief description of what is meant by the term anion.
c) What kinds of compounds contain cations and anions?
d) What is the name of the bond between cation(s) and anion(s)?
e) What is the nature of the bond (attraction) in these compounds? (That is, what holds the ions together to make the bond?)
f) An ion that we have not discussed in great detail is $\mathrm{NH}_{4}{ }^{+}$. Draw a Lewis structure of this polyatomic ion.
g) Write a formula for the compound of this ion combined with each of the ions $\mathrm{Cl}^{-}, \mathrm{CO}_{3}{ }^{2-}, \mathrm{PO}_{4}{ }^{3-}$.
h) $\quad \mathrm{NH}_{4}{ }^{+}$is called the ammonium ion. Provide the name for each compound in g).
(15) 5. Draw the Lewis structure for each of the following compounds/elements. (Show all bonding and nonbonding electrons.)
a) CHCl_{3}
b) $\quad \mathrm{OF}_{2}$
c) $\quad \mathrm{N}_{2}$
d) $\quad \mathrm{ONCl}$
e) $\quad \mathrm{N}_{2} \mathrm{H}_{4}$
(10) 6 . What is the molecular geometry/shape of the following compounds. (Note: In the case of $\mathrm{N}_{2} \mathrm{H}_{4}$ provide the molecular geometry around each nitrogen.)

Substance	Molecular geometry/shape
$\mathrm{H}_{2} \mathrm{~S}$	
OF_{2}	
CHCl_{3}	
$\mathrm{~N}_{2} \mathrm{H}_{4}$	
$\mathrm{H}_{2} \mathrm{CO}$	

(12) 7. Draw and name six structural isomers for the compound $\mathrm{C}_{7} \mathrm{H}_{16}$. (Be sure to clearly show all bonds between carbon and hydrogen.)
(4) 8. Are there any structural isomers of the compound $\mathrm{C}_{10} \mathrm{H}_{22}$ with a parent chain five carbons long? If so draw an example and name the compound. If there are no structural isomers with a parent chain of five carbons, briefly explain why.
(6) 9. Name or draw the Lewis structure for the following organic compounds

3-methyl-4,4-diethylheptane		

(4) 10. The equation for the formation of magnesium chloride is,

$$
\mathrm{Mg}(\mathrm{~s})+\mathrm{Cl}_{2}(\mathrm{~g}) \text {--> } \mathrm{MgCl}_{2}(\mathrm{~s})
$$

We see the formula Cl_{2} appears on both sides of the equation. Using a diagram(s) or words explain the difference in the bonding in the two substances containing chlorine.

Lanthanides

Actinides

58	59	60		62	,	64	65	6			,	,	71
Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	$\mathbf{Y b}$	Lu
140.1	140.9	144.2	(145)	150.4	152.0	157.2	158.9	162.5	164.9	167.3	168.9	173.0	175.0
90	91	92	93	94	95	96	97	98	99	100	101	102	103
Th	$\mathbf{P a}$	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
232.0	231.0	238.0	237.0	(244)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)	(260)

Useful Information

