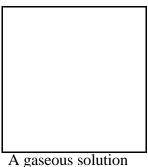
Exam I John I. Gelder September 16, 1999	TA's Name Lab Section
	sion to post your course scores on homework, laboratories and posted. All scores will be posted by a random number assigned to
	(signature)
1.	INSTRUCTIONS : This examination consists of a total of 6 different pages. The last page includes a periodic table and some useful
2.	information. All work should be done in this booklet. PRINT your name, TA's name and your lab section number <u>now</u> in the space at the top of this sheet. <u>DO</u> <u>NOT SEPARATE THESE PAGES</u> . You will receive 2 points for knowing your TA's name AND laboratory section number in which you are officially enrolled.
3.	Answer all questions that you can and whenever called for show your work clearly. Your method of solving problems should pattern the approach used in lecture/discussion. You do not have to show your work for the multiple choice (if any) or short answer questions.

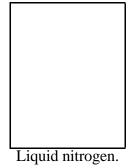
CHEM 1014

4. No credit will be awarded if your work is not shown in problems 3, 6b and 6c.

Name _____

- 5. Point values are shown next to the problem number.
- 6. Budget your time for each of the questions. Some problems may have a low point value yet be very challenging. If you do not recognize the solution to a question quickly, skip it, and return to the question after completing the easier problems.
- 7. Look through the exam before beginning; plan your work; then begin.
- 8. Relax and do well.


	Page 2	Page 3	Page 4	Page 5	TOTAL
SCORES					
	(39)	(23)	(23)	(13)	(100)


CHEM 1014 EXAM I

(15) 1. Complete the following table with the missing information.

Name	Formula	Symbol	Phase (25 °C)
		Р	
hydrogen			
		Au	
		F	
lead			

(12) 2. Diagram each of the following systems as viewed at the atomic level in the space provided. Be sure to clearly label each of the substances in your diagram.

- A gaseous solution of two elements.
- (12) 3. Complete the following temperature conversions.
 - a) If a sample of silver melts at 1235 K, calculate the melting point in °F and °C.

b) Liquid nitrogen boils at -321 °F. Calculate the boiling point of nitrogen in °C.

CHEM 1014 EXAM I

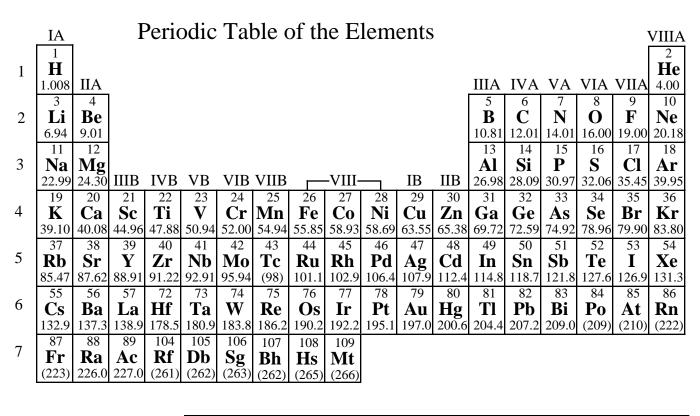
plete the follo stance 'A' and		or example, calcul	ate the density for su	ubstance 'A' giver	the mass of
Substance	Mass (g)	Volume (mL)	Density (g mL ⁻¹)	Phase (25 °C)	
Δ	37 5	56.8		liquid	

А	37.5	56.8		liquid
В		13.3	1.59	liquid
С	1,225		1.35	solid

Assume you had 25 mL samples of the two liquids in the table above and a 25 mL sample of water. Describe the order (top to bottom) of the substances when placed into the same graduated cylinder. What would happen if a piece of the solid (from above) were dropped into the graduated cylinder? Draw and label a picture of a graduated cylinder before and after adding the solid.

(8) 5. Give an example of an element and of a compound. Describe the difference between an element and a compound.

(15)6a. In class we established and investigated the inverse relationship between pressure and volume for a gas. What is the relationship between pressure and temperature of a gas, direct or inverse? Why?


b) The pressure exerted by a 15.0 mL sample of a gas in a syringe was 1.20 atm. Calculate the pressure exerted by the same sample when the volume is increased to 35.0 mLs.

c) A 2.50 L sample of carbon dioxide at 298 K is cooled to -50 °C. Calculate the volume of the sample of carbon dioxide.

(8) 7. In a container of a gas with a fixed volume no gas can escape or enter the container. If the gas in the container is cooled to a low enough temperature it condenses and forms a liquid. Briefly, explain what is happening as the gas is cooled, and why condensation occurs.

(8) 8. In one of the experiments/demonstrations I did in class I placed some water in an empty soda can (Coke Cola) and heated the can/water over a flame from a Bunsen burner. Describe the remainder of the experiment. Provide a brief explanation for what happened to the can.

(5) 9. Explain why it is so easy to compress the volume of a sample of a gas, but very difficult to compress the volume of a liquid.

	58	59	60	61	62	63	64	65	66	67	68	69	70	71
Lanthanides	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dv	Ho	Er	Tm	Yb	Lu
														175.0
	90	91	92	93	94	95	96	97	98	99	100	101	102	103
Actinides	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
	232.0	231.0	238.0	237.0	(244)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)	(260)

Useful Information

 $^{\circ}F = \frac{9}{5} \,^{\circ}C + 32$

density of water (liquid) = 1.0 g mL^{-1}

 $\mathbf{K} = ^{\circ}\mathbf{C} + 273.15 \qquad \qquad \mathbf{P} \cdot \mathbf{V} = \mathbf{k} \text{ (Boyle's Law)}$

 $1 \text{ atm} = 14.7 \text{ lb in}^{-2}$

 $V = k \cdot T$ (Charles' Law)