- Asswer the following questions about BeC₂O₄(s) and its hydrate.
 - (a) Calculate the mass percent of carbon in the hydrated form of the solid that has the formula BeC₂O₄ · 3 H₂O
 - (b) When heated to 220.°C, BeC₂O₄·3 H₂O(s) dehydrates completely as represented below.

$$BeC_2O_4 \cdot 3 H_2O(s) \rightarrow BeC_2O_4(s) + 3 H_2O(g)$$

If 3.21 g of BeC₂O₄·3 H₂O(s) is heated to 220.°C, calculate

- (i) the mass of BeC₂O₄(s) formed, and,
- (ii) the volume of the H₂O(g) released, measured at 220.°C and 735 mm Hg.
- (c) A 0.345 g sample of anhydrous BeC₂O₄, which contains an inert impurity, was dissolved in sufficient water to produce 100. mL of solution. A 20.0 mL portion of the solution was titrated with KMnO₄(aq). The balanced equation for the reaction that occurred is as follows.

16 H⁺(aq) + 2 MnO₄⁻(aq) + 5
$$\stackrel{\leftarrow}{C}_2$$
O₄²⁻(aq) \rightarrow 2 Mn²⁺(aq) + 10 $\stackrel{\leftarrow}{C}$ O₂(g) + 8 H₂O(l).

The volume of 0.0150 M KMnO₄(aq) required to reach the equivalence point was 17.80 mL.

- (i) Identify the reducing agent in the titration reaction.
- (ii) For the titration at the equivalence point, calculate the number of moles of each of the following that reacted.

,3:3

- MnO₄⁻(aq)
- C₂O₄²⁻(aq)
- (iii) Calculate the total number of moles of C₂O₄²-(aq) that were present in the 100 mL of prepared solution.
- (iv) Calculate the mass percent of BeC₂O₄(s) in the impure 0.345 g sample.

3 - 0/ 1 20	The second secon
Beczoy: 3H20	
242 100=17.99	
(9.012+24+64+54)	
bliB.algx ImpleBe(-04.3H20	1 male Be(=04 × 97.012g - [2.06g].
(ii) PV=NRT V= NRT P N=3.21g × 3moles H20 = .0638 m 151.012 mole Re(20,3420	olen H ₂ 0 V= (.0638 males) (G24 LTON X 493 K) 735 Torr