- Answer the following questions about BeC₂O₄(s) and its hydrate. - (a) Calculate the mass percent of carbon in the hydrated form of the solid that has the formula BeC₂O₄·3 H₂O - (b) When heated to 220.°C, BeC₂O₄ · 3 H₂O(s) dehydrates completely as represented below. $$BeC_2O_4 \cdot 3 H_2O(s) \rightarrow BeC_2O_4(s) + 3 H_2O(g)$$ If 3.21 g of BeC2O4 · 3 H2O(s) is heated to 220.°C, calculate - (i) the mass of BeC2O4(s) formed, and, - (ii) the volume of the H₂O(g) released, measured at 220.°C and 735 mm Hg. - (c) A 0.345 g sample of anhydrous BeC₂O₄, which contains an inert impurity, was dissolved in sufficient water to produce 100. mL of solution A 20.0 mL portion of the solution was titrated with KMnO₄(aq). The balanced equation for the reaction that occurred is as follows. 16 H⁺(aq) + 2 MnO₄⁻(aq) + 5 C₂O₄²⁻(aq) $$\rightarrow$$ 2 Mn²⁺(aq) + 10 CO₂(g) + 8 H₂O(l). The volume of 0.0150 M KMnO₄(aq) required to reach the equivalence point was 17.80 mL. - (i) Identify the reducing agent in the titration reaction. - (ii) For the titration at the equivalence point, calculate the number of moles of each of the following that reacted. - MnO₄⁻(aq) - C₂O₄²⁻(aq) - (iii) Calculate the total number of moles of C₂O₄²⁻(aq) that were present in the 100. mL of prepared solution. - (iv) Calculate the mass percent of BeC2O4(s) in the impure 0.345 g sample.