- 2. Answer the following questions that relate to electrochemical reactions.
 - (a) Under standard conditions at 25°C, Zn(s) reacts with Co2+(aq) to produce Co(s).
 - (i) Write the balanced equation for the oxidation half reaction.
 - (ii) Write the balanced net-ionic equation for the overall reaction.
 - (iii) Calculate the standard potential, Eo, for the overall reaction at 25°C.
 - (b) At 25°C, H2O2 decomposes according to the following equation.

$$2 \text{ H}_2\text{O}_2(aq) \rightarrow 2.\text{H}_2\text{O}(l) + \text{O}_2(g)$$
 $E^{\circ} = 0.55 \text{ V}$

- Determine the value of the standard free energy change, ΔG°, for the reaction at 25°C.
- (ii) Determine the value of the equilibrium constant, K_{eq} , for the reaction at 25°C.
- (iii) The standard reduction potential, E° , for the half reaction $O_2(g) + 4 H^{+}(aq) + 4 e^{-} \rightarrow 2 H_2O(I)$ has a value of 1.23 V. Using this information in addition to the information given above, determine the value of the standard reduction potential, E° , for the half reaction below.

$$O_2(g) + 2 H^+(aq) + 2 e^- \rightarrow H_2O_2(aq)$$

(c) In an electrolytic cell, Cu(s) is produced by the electrolysis of CuSO₄(aq). Calculate the maximum mass of Cu(s) that can be deposited by a direct current of 100. amperes passed through 5.00 L of 2.00 M CuSO₄(aq) for a period of 1.00 hour.

211	6+2n2+			
(i) 2n	-> Zn2+ 2e-			
(1)	24 5 0 5	27		<u>.</u>
(ii) 504	C-3+ -> C-+2	^		
(111) 20	-> 2na++2e-	.76		
Co	-> 2~2++2e-	28		
1 4.		.48		
	Fo= .48		<u> </u>	