Gas Law Simulation A Criteria

I. Data Collection

A. 1=m, 2=n, 3=o, 4=p. [Particles, atoms, molecules], [collisions, crash], [velocity, speed], [energy, force].

- _____a. particles are moving in straight lines
- _____b. particles are colliding with walls
- _____c. particles are colliding with each other
- _____d. particles collide or crash
- _____e. speeds of particles are not the same
- _____f. speed(s) of particle(s) change(s)
- _____g. force or energy of collision influences speed of particles.

В.

OBSERVATION (graph)

- _____a. straight line (between collisions)
- b. angle of collision with walls

EXPLANATION:

- ____c. speed changes as a result of collision with other particles
- ____d. direction changes

MISCONCEPTION:

_____e. speed changes as a result of collision with wall

С.

- _____a. organized
- LABELS (incl. correct units)
- _____b. 1.01 atm (pressure)
- _____c. 22.4 L (volume)
- _____d. 275.25 K (temp.)

D. (pt. 1)

- _____a. different particles have different speeds
- _____b. speed(s) of particle(s) change(s)
- _____c. average speed is constant

D. (pt. 2)

____a. draw graph

- b. label axis (x: speed, y: number of particles)
- _____c. label line (average speed)
- _____d. label blocks (number of particles in a particular speed)

E.

OBSERVATION

- _____a. as pressure increases, volume decreases, or vice versa
- _____b. no changes in velocity distribution or average velocity
- _____c. number of collision increases or velocity changes more often when

volume decreases.

EXPLANATION

____d. pressure increases because collision with walls increases

e. pressure increases because collision increases

MISCONCEPTION

_____f. average speed changes

g. pressure increases because collision between particles increases

II. Data Analysis

___a. correct graph

b. pressure and volume are inversely proportional (in word)

_____c. pV=constant or p 1/V

MISCONCEPTION

_____d. wrong graph

<u>e.</u> p = 1/V

____f. y=ax + b

III. Interpretation and Conclusions

A.

_____a. pressure and volume are inversely proportional, or PV= c or p 1/V

B.

- a. show two situations with different volumes and same number of particles
- _____b. explain that the collisions in a unit time are different
- c. (because) average speeds are the same but volumes are different
- _____d. two situations with different volumes and different number of particles

C.

- a. correct answer (e.g. 0.226 atm and 275 K) extrapolated from graph that pV=c=22.6
- b. correct answer from pV=nRT or $p_1V_1=p_2V_2$

_____c. correct answer only