CHEM 1515	Name
Exam I John I. Gelder	TA's Name
September 16, 1993	Lab Section
Please sign your name below to give permiss	ion to post by the last 4 digits of your student ID number your

Please sign your name below to give permission to post, by the last 4 digits of your student I.D. number, your course scores on homework, laboratories and exams. If you do not give me permission by signing I will not post any of your scores.

(signature)

INSTRUCTIONS:

		1.	This e The la pressu equati	xamination co st two pages ires for water, ons. All wor	onsists of include a j , a solubili k should b	a total of 8 d periodic table ity table and be done in th	lifferent pages. e, a table of vapo some useful is booklet.
		2.	PRIN' numbe <u>NOT</u> (Г your name, er <u>now</u> in the SEPARATE ⁷	TA's nam space at th THESE P.	ne and your l ne top of this <u>AGES</u> .	ab section sheet. <u>DO</u>
		3.	Answe for she proble You d choice	er all question ow your work oms should pa o not have to e or short ansy	as that you c clearly. ttern the a show you wer questi	a can and wh Your metho approach use ar work for th tons.	enever called d of solving d in lecture. ne multiple
		4.	No cre proble	edit will be av ems 6 - 9.	warded if	your work is	not shown in
		5.	Point	values are sho	own next t	to the problem	m number.
		6.	Budge proble challe questi compl	et your time for oms may have nging. If you on quickly, sk eting the easi	or each of a low poi do not rea kip it, and er problem	the question int value yet cognize the s return to the ns.	s. Some be very solution to a question after
		7.	Look work;	through the ex then begin.	kam befor	e beginning;	plan your
		8.	Rela	X and do wel	1.		
Page 2	Page 3	Pa	ige 4	Page 5		TOTAL	

SCORES					
	(30)	(24)	(19)	(27)	(100)

- (9) 1. Write the chemical formula(s) of the product(s) and balance the following reactions. Identify all products phases as either (g)as, (l)iquid, (s)olid or (aq)ueous. Soluble ionic compounds should be written in the form of their component ions.
 - a) $Ni(NO_3)_2(aq) + NaOH(aq) \rightarrow$
 - b) Na(s) + H₂O(l) \rightarrow
 - c) $AgNO_3(aq) + NaCl(aq) \rightarrow$
- (3) 2. Describe what happens when 10 drops of aqueous 3 M NH₃ is added to a test tube containing the products of the reaction between $AgNO_3(aq)$ and NaCl(aq). Write the chemical equation for the reaction which occurs between one of the products of the reaction and $NH_3(aq)$.

(8) 3. Complete the following equations to describe the indicated compound's behavior when added to water. If the compound will not dissolve in water, write WND.

a)
$$CH_{3}COOH(l) \xrightarrow{H_{2}O} \rightarrow$$

b) $(NH_{4})_{2}CO_{3}(s) \xrightarrow{H_{2}O} \rightarrow$
c) $C_{12}H_{22}O_{11}(s) \xrightarrow{H_{2}O} \rightarrow$
 $H_{2}O$

d)
$$K_3PO_4(s) \rightarrow$$

- (10) 4. Considering intermolecular attractive forces, briefly explain the following observations. In the boxed section sketch diagram(s), depicting at the atomic level, how (NH₂)₂CO interacts with several water molecules.
 - a) $(NH_2)_2CO(s)$ dissolves in $H_2O(l)$

b) NaCl(s) does not dissolves in CCl₄(l)

- (6) 5. Indicate the type of attractive force(s) that occur in each of the following pure substances:
 - a) $(CH_3)_2CO(l)$
 - b) $CS_2(l)$
 - c) MgO(s)
 - d) $CH_3COOH(l)$
- (8) 6. Describe how you would prepare 500. mL of a 0.0300 M NaCl solution beginning with a 0.750 M NaCl solution. You should use any additional volumetric flasks and/or pipets of desired volume in your description of the solution preparation.

(10) 7. A solution of hydrochloric acid in water, HCl(aq), is 38.00% hydrogen chloride, HCl, by weight. Calculate the molality of the solution.

(10)8a. The mole fraction of glycerol, $C_3H_8O_3$, in a particular glycerol-water solution is equal to 0.115. Determine the mass of glycerol in 300 mLs of this solution if the density of the solution is 1.101 g·mL⁻¹.

b. Glycerol is miscible in water. Draw a Lewis structure for glycerol which supports this experimental fact.

(9) 9. Determine the ideal boiling point of a solution prepared by mixing $4.10 \text{ g of } Ca(NO_3)_2$ in 500 g of water.

Multiple Choice:

Print the letter (A, B, C, D, E) which corresponds to the answer selected.

10	11	12	13
14	15	16	17
18			

ONLY THE ANSWERS IN THE AREA ABOVE WILL BE GRADED. Select the most correct answer for each question. Each question is worth 3 points.

- 10. When a liquid is placed in a closed container
 - A) evaporation stops.
 - B) evaporation continues for a time then stops
 - C) the vapor pressure above the liquid becomes one atmosphere.
 - D) evaporation and condensation continue to occur, but at equal speed.
- 11. When 0.00138 moles of hydrogen fluoride (HF) is added to 100.0 g of water, careful measurement of the freezing point of the solution shows it is lowered by 0.0281 °C. HF is a(n)
 - A) ionic compound.
 - B) weak electrolyte.
 - C) strong electrolyte.
 - D) nonelectrolyte.
- 12. A perchloric acid (HClO₄) solution is 59.0% by mass and it is also 9.18 M. Calculate the density of the solution.
 - A) 0.918 g⋅mL⁻¹
 - B) 1.18 g·mL^{-1}
 - C) 1.41 g·mL⁻¹
 - D) 1.56 g·mL⁻¹
- 13. A solution of 5.00 g of unknown *X* dissolved in 20.0 g of benzene freezes at -4.52 °C. Benzene normally freezes at 5.48 °C and is k_f is 5.12 $\frac{^{\circ}C}{m}$. What is unknown *X*?
 - A) naphthalene, $C_{10}H_8$
 - B) para-dichlorobenzene, $C_6H_4Cl_2$
 - C) menthol, $C_{10}H_{20}O$
 - D) some other compound
- 14. The molar masses of the three compounds diagrammed below are effectively the same (72). When the compounds are arranged in order of increasing boiling point (lowest boiling point first) what is the correct order?
 - I. H₃C-CH₂-CH₂-CH₂-CH₃ II. H₃C-CH₂-CH₂-CH₂-OH III. CH₃-CH₂-O-CH₂-CH₃
 - A) I, II, III
 B) II, I, III
 C) II, III, I
 D) III, I, II
 - E) I, III. II

- 15. Which of the following solutions will have the lowest vapor pressure at 25 $^{\circ}$ C?
 - A) 0.100 M CaCl₂
 - B) 0.100 M NaCl
 - C) 0.100 M C₆H₁₂O₆
 - D) 0.100 M NH₄NO₃
- 16. $0.200 \text{ g of } H_2O(l)$ are introduced into an evacuated 250 mL container at 80 °C. The result is a container with
 - A) $H_2O(l)$ only.
 - B) $H_2O(g)$ only.
 - C) $H_2O(l)$ and $H_2O(g)$.
 - D) not enough information to accurately describe the phase(s) of water in the system.
- 17. Which factors do *not* affect the vapor pressure of a liquid at equilibrium?
 - I. Intermolecular forces of attraction
 - II. The volume of the liquid present.
 - III. The temperature of the liquid.

- A) I only
- B) II only
- C) I and II only
- D) II and III only
- 18. According to the phase diagram below, if the pressure is increased at constant temperature, from point A, what change will occur?

- A) Solid will change to vapor.
- B) Liquid will change to vapor
- C) Liquid will change to solid
- D) Solid will change to liquid

	58	59	60	61	62	63	64	65	66	67	68	69	70	71
Lanthanides	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dv	Ho	Er	Tm	Yb	Lu
	140.1	140.9	144.2	(145)	150.4	152.0	157.2	158.9	162.5	164.9	167.3	168.9	173.0	175.0
	90	91	92	93	94	95	96	97	98	99	100	101	102	103
Actinides	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
	232.0	231.0	238.0	237.0	(244)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)	(260)

Useful Information

$$PV = nRT$$

$$R = 0.0821 \frac{L \cdot atm}{mol \cdot K}$$

 $P_{solution} = \chi_{solvent} P^{\circ}_{solvent}$

density of H₂O =
$$1.00 \frac{\text{g}}{\text{cm}^3}$$

$$\Delta T = i km$$
 $k_f(H_2O) = 1.86 \frac{C}{m}$ $k_b(H_2O) = 0.512 \frac{C}{m}$

Temperature (°C)	Vapor	Temperature ($^{\circ}C$)	Vapor		
Temperature (C)	Pressure(mmHg)	Temperature (C)	Pressure(mmHg)		
-5	3.2	50	92.5		
0	4.6	55	118.0		
5	6.52	60	149.4		
10	9.20	65	187.5		
15	12.8	70	233.7		
20	17.5	75	289.1		
25	23.8	80	355.1		
30	31.8	85	433.6		
35	42.1	90	525.8		
40	55.3	95	633.9		
45	71.9	100	760		

IonSolubilityExceptions NO_3^- solublenone ClO_4^- solublenone Cl^- solubleexcept Ag ⁺ , Hg2 ²⁺ , *Pb2 ⁺	
NO_3^- solublenone ClO_4^- solublenone Cl^- solubleexcept Ag ⁺ , Hg ₂ ²⁺ , *Pb ²⁺	
ClO_4^- solublenone Cl^- solubleexcept Ag ⁺ , Hg2 ⁺ , *Pb2 ⁺	
Cl ⁻ soluble except Ag^+ , Hg_2^{2+} , $*Pb^{2+}$	
I^- soluble except Ag ⁺ , Hg ₂ ²⁺ , Pb ²⁺	
SO_4^{2-} soluble except Ca^{2+} , Ba^{2+} , Sr^{2+} , Hg^{2+} , Pb^{2+} , Ag^+	
CO_3^{2-} insoluble except Group IA and NH_4^+	
PO_4^{3-} insoluble except Group IA and NH_4^+	
⁻ OH insoluble except Group IA, *Ca ²⁺ , Ba ²⁺ , Sr ²⁺	
S^{2-} insoluble except Group IA, IIA and NH_4^+	
Na ⁺ soluble none	
NH_4^+ soluble none	
K ⁺ soluble none	
*slightly soluble	

Solubility Table