INSTRUCTIONS:

1. This examination consists of a total of 8 different pages. The last two pages include a periodic table, a table of vapor pressures for water, a solubility table and some useful equations. All work should be done in this booklet.

2. PRINT your name, TA's name and your lab section number now in the space at the top of this sheet. DO NOT SEPARATE THESE PAGES.

3. Answer all questions that you can and whenever called for show your work clearly. Your method of solving problems should pattern the approach used in lecture. You do not have to show your work for the multiple choice or short answer questions.

4. No credit will be awarded if your work is not shown in problems 6 - 9.

5. Point values are shown next to the problem number.

6. Budget your time for each of the questions. Some problems may have a low point value yet be very challenging. If you do not recognize the solution to a question quickly, skip it, and return to the question after completing the easier problems.

7. Look through the exam before beginning; plan your work; then begin.

8. **Relax** and do well.

<table>
<thead>
<tr>
<th>Page 2</th>
<th>Page 3</th>
<th>Page 4</th>
<th>Page 5</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>(30)</td>
<td>(24)</td>
<td>(19)</td>
<td>(27)</td>
<td>(100)</td>
</tr>
</tbody>
</table>
1. Write the chemical formula(s) of the product(s) and balance the following reactions. Identify all products phases as either (g)as, (l)iquid, (s)olid or (aq)ueous. Soluble ionic compounds should be written in the form of their component ions.

 a) Ni(NO$_3$)$_2$(aq) + NaOH(aq) →
 b) Na(s) + H$_2$O(l) →
 c) AgNO$_3$(aq) + NaCl(aq) →

2. Describe what happens when 10 drops of aqueous 3 M NH$_3$ is added to a test tube containing the products of the reaction between AgNO$_3$(aq) and NaCl(aq). Write the chemical equation for the reaction which occurs between one of the products of the reaction and NH$_3$(aq).

3. Complete the following equations to describe the indicated compound's behavior when added to water. If the compound will not dissolve in water, write WND.

 a) CH$_3$COOH(l) → H$_2$O
 b) (NH$_4$)$_2$CO$_3$(s) → H$_2$O
 c) C$_{12}$H$_{22}$O$_{11}$(s) → H$_2$O
 d) K$_3$PO$_4$(s) → H$_2$O

4. Considering intermolecular attractive forces, briefly explain the following observations. In the boxed section sketch diagram(s), depicting at the atomic level, how (NH$_2$)$_2$CO interacts with several water molecules.

 a) (NH$_2$)$_2$CO(s) dissolves in H$_2$O(l)

 b) NaCl(s) does not dissolves in CCl$_4$(l)
5. Indicate the type of attractive force(s) that occur in each of the following pure substances:

a) \((\text{CH}_3\text{)}_2\text{CO}(l)\)

b) \(\text{CS}_2(l)\)

c) \(\text{MgO}(s)\)

d) \(\text{CH}_3\text{COOH}(l)\)

6. Describe how you would prepare 500. mL of a 0.0300 M NaCl solution beginning with a 0.750 M NaCl solution. You should use any additional volumetric flasks and/or pipets of desired volume in your description of the solution preparation.

7. A solution of hydrochloric acid in water, \(\text{HCl}(aq)\), is 38.00% hydrogen chloride, HCl, by weight. Calculate the molality of the solution.
(10) 8a. The mole fraction of glycerol, \(C_3H_8O_3 \), in a particular glycerol–water solution is equal to 0.115. Determine the mass of glycerol in 300 mLs of this solution if the density of the solution is 1.101 g·mL\(^{-1}\).

b. Glycerol is miscible in water. Draw a Lewis structure for glycerol which supports this experimental fact.

(9) 9. Determine the ideal boiling point of a solution prepared by mixing 4.10 g of \(Ca(NO_3)_2 \) in 500 g of water.
Multiple Choice:

Print the letter (A, B, C, D, E) which corresponds to the answer selected.

10. ________ 11. ________ 12. ________ 13. ________
14. ________ 15. ________ 16. ________ 17. ________
18. ________

ONLY THE ANSWERS IN THE AREA ABOVE WILL BE GRADED. Select the most correct answer for each question. Each question is worth 3 points.

10. When a liquid is placed in a closed container
 A) evaporation stops.
 B) evaporation continues for a time then stops
 C) the vapor pressure above the liquid becomes one atmosphere.
 D) evaporation and condensation continue to occur, but at equal speed.

11. When 0.00138 moles of hydrogen fluoride (HF) is added to 100.0 g of water, careful measurement of the freezing point of the solution shows it is lowered by 0.0281 °C. HF is a(n)
 A) ionic compound.
 B) weak electrolyte.
 C) strong electrolyte.
 D) nonelectrolyte.

12. A perchloric acid (HClO₄) solution is 59.0% by mass and it is also 9.18 M. Calculate the density of the solution.
 A) 0.918 g·mL⁻¹
 B) 1.18 g·mL⁻¹
 C) 1.41 g·mL⁻¹
 D) 1.56 g·mL⁻¹

13. A solution of 5.00 g of unknown X dissolved in 20.0 g of benzene freezes at –4.52 °C. Benzene normally freezes at 5.48 °C and is k_f is 5.12 °C m⁻¹. What is unknown X?
 A) naphthalene, C₁₀H₈
 B) para-dichlorobenzene, C₆H₄Cl₂
 C) menthol, C₁₀H₂₀O
 D) some other compound

14. The molar masses of the three compounds diagrammed below are effectively the same (72). When the compounds are arranged in order of increasing boiling point (lowest boiling point first) what is the correct order?
 I. H₃C–CH₂–CH₂–CH₂–CH₃
 II. H₃C–CH₂–CH₂–CH₂–OH
 III. CH₃–CH₂–O–CH₂–CH₃
 A) I, II, III
 B) II, I, III
 C) II, III, I
 D) III, I, II
 E) I, III, II
15. Which of the following solutions will have the lowest vapor pressure at 25 °C?

A) 0.100 M CaCl₂
B) 0.100 M NaCl
C) 0.100 M C₆H₁₂O₆
D) 0.100 M NH₄NO₃

16. 0.200 g of H₂O(l) are introduced into an evacuated 250 mL container at 80 °C. The result is a container with
A) H₂O(l) only.
B) H₂O(g) only.
C) H₂O(l) and H₂O(g).
D) not enough information to accurately describe the phase(s) of water in the system.

17. Which factors do not affect the vapor pressure of a liquid at equilibrium?

I. Intermolecular forces of attraction
II. The volume of the liquid present.
III. The temperature of the liquid.

A) I only
B) II only
C) I and II only
D) II and III only

18. According to the phase diagram below, if the pressure is increased at constant temperature, from point A, what change will occur?

A) Solid will change to vapor.
B) Liquid will change to vapor
C) Liquid will change to solid
D) Solid will change to liquid
Useful Information

PV = nRT

\[R = 0.0821 \text{ L·atm mol}^{-1} \text{K}^{-1} \]

\[\text{P}_{\text{solution}} = \chi_{\text{solvent}} P_{\text{solvent}} \]

\[k_f(\text{H}_2\text{O}) = 1.86 \text{ °C m} \]

\[k_b(\text{H}_2\text{O}) = 0.512 \text{ °C m} \]

<table>
<thead>
<tr>
<th>Temperature (°C)</th>
<th>Vapor Pressure (mmHg)</th>
<th>Temperature (°C)</th>
<th>Vapor Pressure (mmHg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-5</td>
<td>3.2</td>
<td>50</td>
<td>92.5</td>
</tr>
<tr>
<td>0</td>
<td>4.6</td>
<td>55</td>
<td>118.0</td>
</tr>
<tr>
<td>5</td>
<td>6.52</td>
<td>60</td>
<td>149.4</td>
</tr>
<tr>
<td>10</td>
<td>9.20</td>
<td>65</td>
<td>187.5</td>
</tr>
<tr>
<td>15</td>
<td>12.8</td>
<td>70</td>
<td>233.7</td>
</tr>
<tr>
<td>20</td>
<td>17.5</td>
<td>75</td>
<td>289.1</td>
</tr>
<tr>
<td>25</td>
<td>23.8</td>
<td>80</td>
<td>355.1</td>
</tr>
<tr>
<td>30</td>
<td>31.8</td>
<td>85</td>
<td>433.6</td>
</tr>
<tr>
<td>35</td>
<td>42.1</td>
<td>90</td>
<td>525.8</td>
</tr>
<tr>
<td>40</td>
<td>55.3</td>
<td>95</td>
<td>633.9</td>
</tr>
<tr>
<td>45</td>
<td>71.9</td>
<td>100</td>
<td>760</td>
</tr>
</tbody>
</table>
Solubility Table

<table>
<thead>
<tr>
<th>Ion</th>
<th>Solubility</th>
<th>Exceptions</th>
</tr>
</thead>
<tbody>
<tr>
<td>NO$_3^-$</td>
<td>soluble</td>
<td>none</td>
</tr>
<tr>
<td>ClO$_4^-$</td>
<td>soluble</td>
<td>none</td>
</tr>
<tr>
<td>Cl$^-$</td>
<td>soluble</td>
<td>except Ag$^+$, Hg$_2^{2+}$, Pb$^{2+}$</td>
</tr>
<tr>
<td>I$^-$</td>
<td>soluble</td>
<td>except Ag$^+$, Hg$_2^{2+}$, Pb$^{2+}$</td>
</tr>
<tr>
<td>SO$_4^{2-}$</td>
<td>soluble</td>
<td>except Ca$^{2+}$, Ba$^{2+}$, Sr$^{2+}$, Hg$^{2+}$, Pb$^{2+}$, Ag$^+$</td>
</tr>
<tr>
<td>CO$_3^{2-}$</td>
<td>insoluble</td>
<td>except Group IA and NH$_4^+$</td>
</tr>
<tr>
<td>PO$_4^{3-}$</td>
<td>insoluble</td>
<td>except Group IA and NH$_4^+$</td>
</tr>
<tr>
<td>OH$^-$</td>
<td>insoluble</td>
<td>except Group IA, Ca$^{2+}$, Ba$^{2+}$, Sr$^{2+}$</td>
</tr>
<tr>
<td>S$^{2-}$</td>
<td>insoluble</td>
<td>except Group IA, IIA and NH$_4^+$</td>
</tr>
<tr>
<td>Na$^+$</td>
<td>soluble</td>
<td>none</td>
</tr>
<tr>
<td>NH$_4^+$</td>
<td>soluble</td>
<td>none</td>
</tr>
<tr>
<td>K$^+$</td>
<td>soluble</td>
<td>none</td>
</tr>
</tbody>
</table>

*slightly soluble