CHEM 1515.001 Exam III John III. Gelder April 12, 2001

Name	
TA's Name	
Lab Section	

INSTRUCTIONS:

- 1. This examination consists of a total of 7 different pages. The last two pages include a periodic table, some useful mathematical equations and a solubility table. All work should be done in this booklet.
- 2. PRINT your name, TA's name and your lab section number <u>now</u> in the space at the top of this sheet. <u>DO</u> NOT SEPARATE THESE PAGES.
- 3. Answer all questions that you can and whenever called for show your work clearly. Your method of solving problems should pattern the approach used in lecture. You do not have to show your work for the multiple choice or short answer questions.
- 4. No credit will be awarded if your work is not shown in problems 4a, 4c, 4d, 5, 7 and 8.
- 5. Point values are shown next to the problem number.
- 6. Budget your time for each of the questions. Some problems may have a low point value yet be very challenging. If you do not recognize the solution to a question quickly, skip it, and return to the question after completing the easier problems.
- 7. Look through the exam before beginning; plan your work; then begin.
- 8. Relax and do well.

	Page 2	Page 3	Page 4	Page 5	TOTAL
SCORES	(29)	(27)	(18)	(26)	(100)

- (9) 1. Write the chemical formula(s) of the product(s) and balance the following reactions. Identify all products phases as either (g)as, (l)iquid, (s)olid or (aq)ueous. Soluble ionic compounds should be written in the form of their component ions.
 - a) $H_2SO_4(aq) + KOH(aq))$
 - b) $Na_2S(aq) + Al(NO_3)_3(aq)$
 - c) $Fe(NO_3)_3(aq) + KSCN(aq)$
- (4) 2. Write the ionic and net ionic chemical equations for 1a).
 - 1a)

Ionic equation:

Net Ionic equation:

(16) 3. For the reaction

$$2N_2O(g) = 2N_2(g) + O_2(g)$$

The following data was collected;

[N ₂ O]	Time (s)
0.250 M	0
0.218 M	60
0.204 M	90
0.190 M	120
0.166 M	180

Briefly, explain how you would determine whether the reaction is first or second order with respect to N_2O . Also explain how to determine the rate constant for the reaction. (Note: Just explain what to do, calculations are not required.)

(33) 4. The following data was collected at a specific temperature for the reaction

 $2NO(g) + Cl_2(g)$ 2NOCl(g);

Experiment	[NO]	[Cl ₂]	Initial Rate (M s ⁻¹)
1	0.115 M	0.263 M	6.74 x 10 ⁻²
2	0.200 M	0.264 M	1.17 x 10 ⁻¹
3	0.065 M	0.389 M	5.63 x 10 ⁻²

a) Determine the order of the reaction with respect to NO and Cl₂. (Show your work clearly) (8)

b) Write the differential rate law for this reaction. (4)

c) What is the magnitude and the units of the rate constant? (6)

- d) The initial rate listed in the table is in terms of the disappearance of Cl₂. For Experiment 1 calculate the initial rate of appearance of NOCl. (3)
- e) Suggest a 2-step mechanism that is supported by the rate law you determined. (6)

4. (CONTINUED)

f) List two factors that are important for collisions between reactant molecules to be effective. Briefly, explain why all collisions between reactant molecules do not lead to a chemical reaction. (6)

(12) 5. The following reaction,

 $3H_2(g) + N_2(g) \ddot{a} 2NH_3(g)$

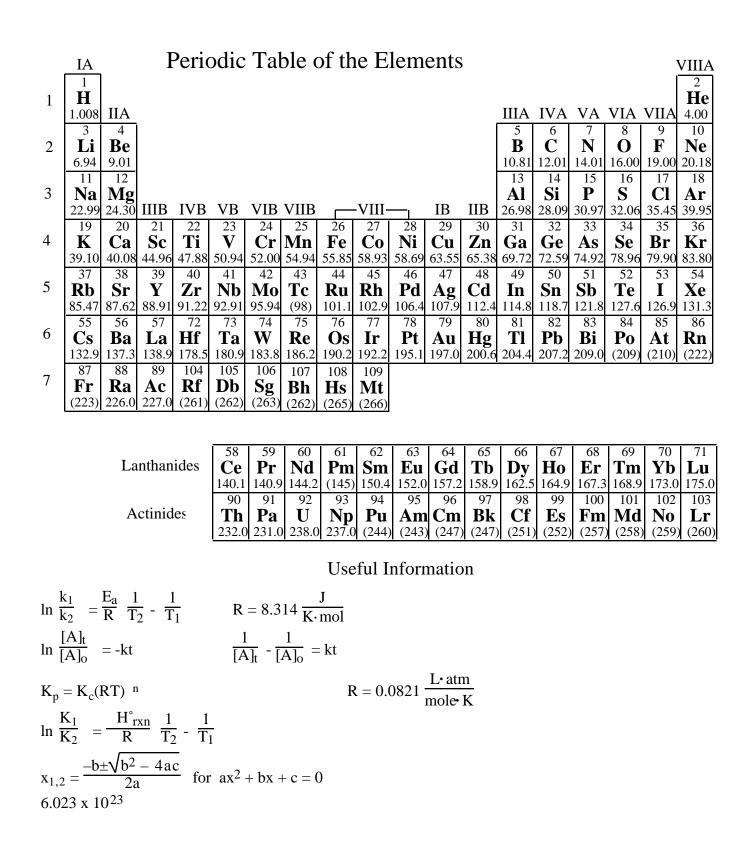
occurs at 700 K. Initially 0.30 mol of H_2 and 0.50 mol of N_2 are added to 1.00 L container, at equilibrium the concentration of H_2 was found to be 0.21 M. Calculate K_c for the reaction.

(8) 6. For the following equation

 $2NO(g) + Br_2(g) \quad \ddot{a} \quad 2NOBr(g)$

 K_c at 25 °C is 5.25 and $H^\circ = -160$ kJ. If the reaction is at equilibrium in a 10.0 L container and subjected to each of the following changes, predict whether the concentration of NOBr will increase, decrease or remain the same.

- a) remove NO?
- b) change the volume of the container to 5.0 L?
- c) change the temperature from 25 $^{\circ}$ C to 50 $^{\circ}$ C?
- d) add a catalyst?
- (6) 7. K_p for the reaction


 $PCl_5(g)$ ä $PCl_3(g) + Cl_2(g)$

is 1.42 at a certain temperature. A mixture is prepared by adding 0.345 mol of PCl_5 , 1.04 mol of PCl_3 and 0.453 mol of Cl_2 to a 5.00 L container. Which direction will the reaction proceed to establish equilibrium? Show your work.

(12) 8. NO is produced in the internal combustion engine from the following reaction;

 $N_2(g) + O_2(g) \quad \ddot{a} \quad 2NO(g)$

 $K_c = 1.7 \times 10^{-3}$ at 2300 K. If the initial concentration of N_2 and O_2 are the same and equal to 1.10 M, calculate the equilibrium concentration of all species.

Ion	<u>Solubility</u>	Exceptions
NO_3^-	soluble	none
ClO_4^-	soluble	none
Cl-	soluble	except Ag ⁺ , Hg ₂ ²⁺ , *Pb ²⁺
I–	soluble	except Ag ⁺ , Hg ₂ ²⁺ , Pb ²⁺
SO4 ²⁻	soluble	except Ca ²⁺ , Ba ²⁺ , Sr ²⁺ , Hg ²⁺ , Pb ²⁺ , Ag ⁺
CO ₃ ^{2–}	insoluble	except Group IA and NH_4^+
PO ₄ ^{3–}	insoluble	except Group IA and NH_4^+
-OH	insoluble	except Group IA, *Ca ²⁺ , Ba ²⁺ , Sr ²⁺
S^{2-}	insoluble	except Group IA, IIA and NH ₄ ⁺
Na ⁺	soluble	none
NH_4^+	soluble	none
K^+	soluble	none
		*slightly soluble

Solubility Table

(14) 5. Molecules of butadiene, C_4H_6 , are known to "dimerize" according to the equation

$$2C_4H_6(g)$$
 $C_8H_{12}(g)$

This dimerization reaction is second order and the rate constant has a value of 0.0140 M⁻¹ \cdot s⁻¹ at 500 °C.

a) Calculate the concentration of C_4H_6 after 45.0 seconds if the initial concentration of C_4H_6 is 0.0250 M.

b) Calculate the half-life for the reaction when the initial concentration of C_4H_6 is 0.0250 M.