CHEM 1515.001-1515.006
Exam I
John I. Gelder
February 8, 2001

Name
TA's Name
Lab Section

INSTRUCTIONS:

1. This examination consists of a total of 8 different pages. The last three pages include a periodic table, a table of vapor pressures for water, and a solubility table. All work should be done in this booklet.
2. PRINT your name, TA's name and your lab section number now in the space at the top of this sheet. DO NOT SEPARATE THESE PAGES.
3. Answer all questions that you can and whenever called for show your work clearly. Your method of solving problems should pattern the approach used in lecture. You do not have to show your work for the multiple choice or short answer questions.
4. No credit will be awarded if your work is not shown in problems 4c and 7.
5. Point values are shown next to the problem number.
6. Budget your time for each of the questions. Some problems may have a low point value yet be very challenging. If you do not recognize the solution to a question quickly, skip it, and return to the question after completing the easier problems.
7. Look through the exam before beginning; plan your work; then begin.
8. Relax and do well.
$\begin{array}{llllll}\text { Page } 2 & \text { Page } 3 & \text { Page } 4 & \text { Page } 5 & \text { Page } 6 & \text { TOTAL }\end{array}$
SCORES

$$
\overline{(24)} \quad \overline{(16)}
$$

$\overline{(24)} \quad \overline{(18)}$
(18)
$\overline{(100)}$
(9) 1. Write the chemical formula(s) of the product(s) and balance the following reactions. Identify all products phases as either (g)as, (l)iquid, (s)olid or (aq)ueous. Soluble ionic compounds should be written in the form of their component ions.
a) $\mathrm{HNO}_{3}(a q)+\mathrm{Ba}(\mathrm{OH})_{2}(a q) \rightarrow$
b) $\mathrm{Na}_{2} \mathrm{~S}(a q)+\mathrm{Fe}\left(\mathrm{NO}_{3}\right)_{3}(a q) \rightarrow$
c) $\quad \mathrm{C}_{3} \mathrm{H}_{6}(g)+\mathrm{O}_{2}(g) \rightarrow$
(4) 2. Write the ionic and net ionic chemical equations for 1a) or 1 b).

1a)
Ionic equation:

Net Ionic equation:
(11) 3. Identify the intermolecular attractive force(s) present in the following substances. If more than one intermolecular force, indicate which is the most important.
a) $\mathrm{N}_{2}(\mathrm{l})$
b) $\mathrm{SO}_{2}(\mathrm{l})$
c) $\mathrm{CH}_{3} \mathrm{NH}_{2}(\mathrm{l})$
d) $\mathrm{CH}_{2} \mathrm{Cl}_{2}(\mathrm{l})$
(16) 4 a . Define the term equilibrium vapor pressure.
b) What is the equilibrium vapor pressure for water at $90^{\circ} \mathrm{C}$?
c) A 1.80 g sample of pure water is injected into a 4.00 L evacuated vessel at $95.0^{\circ} \mathrm{C}$. Calculate the pressure exerted by the sample of water assuming it is completely vaporized.
d) Is the assumption the sample water is completely vaporized at $95.0^{\circ} \mathrm{C}$ in this 4.00 L vessel reasonable? Explain.
e) If the sample in the vessel is cooled to $90.0^{\circ} \mathrm{C}$, indicate the phase(s) present and the pressure exerted by water in the vapor phase.
(24)5a. What is the hybridization on each of the designated central atoms in the molecule shown below.

C_{1}
C_{8}
C_{2}
C_{9}
C_{3}
C_{10}
C_{7} \qquad
b) What is the bond angle for each of the following combination of atoms?

$$
\mathrm{C}_{1}-\mathrm{C}_{6}-\mathrm{C}_{7}
$$

$$
\mathrm{H}-\mathrm{C}_{7}-\mathrm{C}_{8}
$$

\qquad

$$
\mathrm{C}_{9}-\mathrm{C}_{10}-\mathrm{N}
$$

\qquad
$\mathrm{C}_{9}-\mathrm{C}_{8}-\mathrm{O}$ \qquad
c) Determine the number of sigma and pi-bonds in the structure.
d) Clearly identify the portion(s) of the molecule where delocalized electrons are located.
e) Identify the types of atomic or hybrid orbitals needed to explain the bonding in the CN functional group on this molecule and between C_{6} and C_{7}.
(18)6a. Below is the Lewis structure and a ball-and-stick model of methyl alcohol. Indicate the molecular geometry about both the carbon and the oxygen atom.

Lewis structure

ball-and-stick model
b) What is the most important intermolecular attractive force that occurs in liquid methyl alcohol?
c) Draw several methyl alcohol molecules and clearly indicate how adjacent molecules interact. In your sketch label the most important intermolecular attractive force between adjacent methyl alcohol molecules.
d) Methyl alcohol has a normal boiling point of $64.5^{\circ} \mathrm{C}$, Monofluoromethane, $\mathrm{CH}_{3} \mathrm{~F}$, has a normal boiling point of $-78.4^{\circ} \mathrm{C}$. Both of these compounds have approximately the same molar mass, explain the large difference in boiling points.
(18)7a. Isopropyl alcohol, $\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{O}$, has a vapor pressure of 219.0 mmHg at $24.0^{\circ} \mathrm{C}$. If the $\Delta \mathrm{H}^{\circ}{ }_{\text {vaporization }}$ is $19.3 \frac{\mathrm{~kJ}}{\mathrm{~mol}}$, calculate the vapor pressure of isopropyl alcohol at $39.5^{\circ} \mathrm{C}$.
b) What is the normal boiling point for isopropyl alcohol?

Lanthanides

C 58	59 Pr	N0 ${ }^{60}$	Pm	${ }_{\text {Sm }}^{62}$	Eu	G4	$\begin{array}{r} 65 \\ \mathbf{T b} \end{array}$	Dy	${ }^{67}$	${ }^{68}$	$\stackrel{69}{\text { Tm }}$	${ }^{70}$	Lu
140.1	140.9	144.2	(145)	150.4	152.0	157.2	158.9	162.5	164.9	167.3	168.9	173.0	175.0
90	91	92	93	94	95	96	97	98	99	100	101	102	10
Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
232.0	231.0	238.0	237.0	(244)	(243)	(247)	(247)	(251)	(252)	(25	(258)	(25	(260

Useful Information
$\mathrm{PV}=n \mathrm{RT}$
$\ln \left(\frac{\mathrm{vp}_{2}}{\mathrm{vp}_{1}}\right)=-\frac{\Delta \mathrm{H}_{\mathrm{vap}}{ }_{\mathrm{R}}}{\mathrm{R}}\left(\frac{1}{\mathrm{~T}_{2}}-\frac{1}{\mathrm{~T}_{1}}\right)$

$$
\mathrm{R}=0.0821 \frac{\mathrm{~L} \cdot \mathrm{~atm}}{\mathrm{~mol} \cdot \mathrm{~K}}=8.314 \frac{\mathrm{~J}}{\mathrm{~mol} \cdot \mathrm{~K}}
$$

$$
\text { density of } \mathrm{H}_{2} \mathrm{O}=1.00 \frac{\mathrm{~g}}{\mathrm{~cm}^{3}}
$$

density of $\mathrm{H}_{2} \mathrm{O}=1.00 \frac{\mathrm{~g}}{\mathrm{~cm}^{3}}$
$\mathrm{q}=$ mass \cdot Specific heat $\cdot \Delta \mathrm{T}$
$\left.\begin{array}{cccc}\text { Temperature }\left({ }^{\circ} \mathrm{C}\right) & \begin{array}{c}\text { Vapor } \\ \text { Pressure }(\mathrm{mmHg})\end{array} & \text { Temperature }\left({ }^{\circ} \mathrm{C}\right)\end{array} \begin{array}{c}\text { Vapor } \\ \text { Pressure }(\mathrm{mmHg})\end{array}\right)$

Solubility Table

Ion	Solubility	Exceptions
$\mathrm{NO}_{3}{ }^{-}$	soluble	none
ClO_{4}^{-}	soluble	none
Cl^{-}	soluble	except $\mathrm{Ag}^{+}, \mathrm{Hg}_{2}{ }^{2+}$, ${ }^{*} \mathrm{~Pb}^{2+}$
I^{-}	soluble	except $\mathrm{Ag}^{+}, \mathrm{Hg}_{2}{ }^{2+}, \mathrm{Pb}^{2+}$
$\mathrm{SO}_{4}{ }^{2-}$	soluble	except $\mathrm{Ca}^{2+}, \mathrm{Ba}^{2+}, \mathrm{Sr}^{2+}, \mathrm{Hg}^{2+}, \mathrm{Pb}^{2+}, \mathrm{Ag}^{+}$
$\mathrm{CO}_{3}{ }^{2-}$	insoluble	except Group IA and NH_{4}^{+}
$\mathrm{PO}_{4}{ }^{3-}$	insoluble	except Group IA and NH_{4}^{+}
${ }^{-} \mathrm{OH}$	insoluble	except Group IA, $* \mathrm{Ca}^{2+}, \mathrm{Ba}^{2+}, \mathrm{Sr}^{2+}$
S^{2-}	insoluble	except Group IA, IIA and $\mathrm{NH}_{4}{ }^{+}$
Na^{+}	soluble	none
$\mathrm{NH}_{4}{ }^{+}$	soluble	none
K^{+}	soluble	none *slightly soluble

