|          | Name        |  |
|----------|-------------|--|
|          | TA's Name   |  |
|          | Lab Section |  |
| <u> </u> |             |  |

Please sign your name below to give permission to post, by the last 4 digits of your student I.D. number, your course scores on homework, laboratories and exams. If you do not sign no scores will be posted.

CHEM 1314.05 Exam I John I. Gelder

September 13, 1994

## (signature)

# **INSTRUCTIONS:**

|               | 1. | This e<br>The la<br>pressu<br>equation          | xamination<br>st two pages<br>res for wate<br>ons. All wo                     | consists of a total of 6<br>s include a periodic table<br>r, a solubility table and<br>ork should be done in th                | different pages.<br>le, a table of vapor<br>l some useful<br>nis booklet. |
|---------------|----|-------------------------------------------------|-------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|
|               | 2. | PRINT<br>numbe<br><u>NOT S</u>                  | Г your name<br>er <u>now</u> in th<br>SEPARATE                                | e, TA's name and your<br>e space at the top of thi<br><u>THESE PAGES</u> .                                                     | lab section<br>s sheet. <u>DO</u>                                         |
|               | 3. | Answe<br>for sho<br>proble<br>You d<br>choice   | er all question<br>ow your wo<br>ms should p<br>o not have t<br>o or short an | ons that you can and where the clearly. Your methors attern the approach use of show your work for the swer questions.         | nenever called<br>od of solving<br>ed in lecture.<br>he multiple          |
|               | 4. | No cre<br>proble                                | edit will be a ms 2 and 6.                                                    | awarded if your work i                                                                                                         | s not shown in                                                            |
|               | 5. | Point                                           | values are sl                                                                 | nown next to the proble                                                                                                        | em number.                                                                |
|               | 6. | Budge<br>proble<br>challer<br>questic<br>comple | t your time<br>ms may hav<br>nging. If yo<br>on quickly,<br>eting the ear     | for each of the question<br>re a low point value yet<br>u do not recognize the<br>skip it, and return to the<br>sier problems. | ns. Some<br>be very<br>solution to a<br>e question after                  |
|               | 7. | Look t<br>work;                                 | hrough the then begin.                                                        | exam before beginning                                                                                                          | ; plan your                                                               |
|               | 8. | Rela                                            | X and do w                                                                    | ell.                                                                                                                           |                                                                           |
|               |    |                                                 |                                                                               |                                                                                                                                |                                                                           |
| Page 2 Page 3 | Pa | ge 4                                            | Page 5                                                                        | TOT                                                                                                                            | AL                                                                        |

| SCORES |      |      |      |      |       |
|--------|------|------|------|------|-------|
|        | (30) | (19) | (28) | (23) | (100) |

(12) 1. Write the chemical formula(s) of the product(s) and balance the following reactions. Identify all products phases as either (g)as, (l)iquid, (s)olid or (aq)ueous.

a) Na(s) + H<sub>2</sub>O(l) 
$$\rightarrow$$
  
b) H<sub>2</sub>(c) + O<sub>2</sub>(c)  $\stackrel{\Delta}{\rightarrow}$ 

$$H_2(s) + O_2(g) \rightarrow$$

- c)  $C_6H_{10}(g) + O_2(g) \xrightarrow{\Delta}$
- d)  $Ba(OH)_2(aq) + HCl(aq) \rightarrow$
- (12) 2. Perform the following conversions.
  - a) the distance which separates two oxygen atoms in an oxygen molecule is 4.76 x 10<sup>-9</sup> inches. Calculate the distance in picometers (pm).

b) What is 0 Kelvin on the Fahrenheit scale?

c) An automobile engine has a displacement of 320 in<sup>3</sup>. Calculate the displacement in liters.

- (6) 3. Perform the following calculations and give the answer to the correct number of significant figures.
  a) 812 · 0.000023 =
  - b) 4.7553 + 7.345 + 1.4 =
  - c)  $1.27 \times 10^{-2} 4.26 \times 10^{-3} =$

## CHEM 1314 EXAM I

 (9) 4. A mixture is prepared by pouring 10.0 mL H<sub>2</sub>O into a graduated cylinder containing 5.0 mL of hexane. Draw a picture of a graduated cylinder and what the mixture in the graduated cylinder looks like at the macroscopic level a few minutes after the two components are added together. Choose a small section of the mixture which best represents the type of mixture and draw a microscopic level picture. In each case clearly label the two components of the mixture. For the microscopic picture you may use circles to represent the different components. Macroscopic Picture

|  | Microscopic Picture |
|--|---------------------|
|  |                     |
|  |                     |

(10) 5. Complete the following table

| Formula                          | M, Molar<br>Mass $\left( \frac{g}{1} \right)$ | <i>m</i> , mass of | <i>n</i> , moles of | <i>N</i> , number of atoms, molecules, or formula units |
|----------------------------------|-----------------------------------------------|--------------------|---------------------|---------------------------------------------------------|
|                                  | (mol)                                         | sample (gms)       | sample (mor)        |                                                         |
| Na <sub>2</sub> O                |                                               |                    | 0.459               |                                                         |
| H <sub>2</sub> SO <sub>4</sub>   |                                               |                    |                     | 5.12 x 10 <sup>24</sup>                                 |
| X(NO <sub>3</sub> ) <sub>2</sub> |                                               | 146                | 0.816               |                                                         |

What is the symbol for the unknown element, X?

### CHEM 1314 EXAM I

- (28) 6. Given the compound,  $Al_2(SO_4)_3$
- (3) a) Determine its molar mass.
- (9) b) Determine the percent by mass of each of the elements in the compound.

- (2) c) What is the name of the compound?
- (4) d) How many atoms of oxygen are in one formula unit of the compound?

(4) e) How many moles of the compound are contained in 2.450 grams of  $Ab(SO_4)_3$ 

(6) f) What mass of Na<sub>2</sub>SO<sub>4</sub> contains the same number of formula units as 125 gms of  $Ab(SO_4)_3$ ?

## CHEM 1314 EXAM I

### (8) 7. Complete the following table;

| Name of the compound   | Formula of the compound | Ionic or Covalent<br>Compound |
|------------------------|-------------------------|-------------------------------|
| sodium carbonate       |                         |                               |
| diphosphorus pentoxide |                         |                               |
|                        | PbS                     |                               |
|                        | $\operatorname{HBr}(g)$ |                               |

Multiple Choice: (15 points)

Print the letter (A, B, C, D) which corresponds to the answer selected.

8. \_\_\_\_\_ 9. \_\_\_\_ 10. \_\_\_\_ 11. \_\_\_\_ 12. \_\_\_\_

ONLY THE ANSWERS IN THE AREA ABOVE WILL BE GRADED. Select the most correct answer for each question. Each question is worth 3 points.

- 8. A solution of sugar dissolved in water has a density of  $1.05 \frac{g}{cm^3}$ . If the volume of a sample of this solution is 75.0 mL, and if the solution is 8.10% sugar, how many grams of sugar are there in the solution?
  - A) 72.4 g sugar B) 70.6 g sugar C) 6.40 g sugar D) 6.10 g sugar
- Copper has two isotopes, <sup>63</sup>Cu and <sup>65</sup>Cu. How many protons, electrons and neutrons does an atom of <sup>65</sup>Cu contain

|            | Protons | Electrons | Neutrons |
|------------|---------|-----------|----------|
| A)         | 29      | 36        | 29       |
| <b>B</b> ) | 36      | 29        | 29       |
| <b>C</b> ) | 36      | 29        | 29       |
| D)         | 29      | 29        | 36       |

10. You have 0.125 mol of each of the following elements in their standard state at 25 °C: potassium, chlorine, nickel and neon. Which element has the largest mass?

A) potassium B) chlorine C) nickel D) neon

- 11. What is the mass of one atom of gold?
  - A) 3.27 x 10<sup>-22</sup> gms
  - B) 3.06 x 10<sup>21</sup> gms
  - C) 1.79 x 10<sup>-21</sup> gms
  - D) 1.31 x 10<sup>-22</sup> gms
- 12. A solution was prepared by dissolving 260.1 g of pure HNO<sub>3</sub> in 900.0 g of water. The density of the resulting solution is  $1.132 \frac{g}{cm^3}$ . How many mLs of this solution would contain 0.143 mol HNO<sub>3</sub>?

A) 39.01 mLs B) 35.46 mLs C) 7.951 mLs D) 2.944 mLs



|             | 58    | 59    | 60    | 61    | 62    | 63    | 64    | 65    | 66    | 67    | 68    | 69    | 70    | 71    |
|-------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| Lanthanides | Ce    | Pr    | Nd    | Pm    | Sm    | Eu    | Gd    | Tb    | Dy    | Ho    | Er    | Tm    | Yb    | Lu    |
|             | 140.1 | 140.9 | 144.2 | (145) | 150.4 | 152.0 | 157.2 | 158.9 | 162.5 | 164.9 | 167.3 | 168.9 | 173.0 | 175.0 |
|             | 90    | 91    | 92    | 93    | 94    | 95    | 96    | 97    | 98    | 99    | 100   | 101   | 102   | 103   |
| Actinides   | Th    | Pa    | U     | Np    | Pu    | Am    | Cm    | Bk    | Cf    | Es    | Fm    | Md    | No    | Lr    |
|             | 232.0 | 231.0 | 238.0 | 237.0 | (244) | (243) | (247) | (247) | (251) | (252) | (257) | (258) | (259) | (260) |

Useful Information

1 pound (lb) = 453.59237 gram (gm)

1 liter (L) = 1.056718 quart (qt)

1 inch (in) = 2.54 centimeters (cm)

 $^{\circ}\mathrm{C}=\frac{5}{9}(^{\circ}\mathrm{F}-32)$ 

density of water =  $1.00 \frac{g}{mL}$ 

4 qt = 1 gallon (gal)

1 mile = 5280 feet (ft)

K = C + 273.15

average atomic mass =  $\Sigma$ (isotopic mass  $\cdot$  fractional abundance)

Avogadro's number =  $6.022 \times 10^{23}$