Sample Multiple Choice Questions

- 11. Consider the reaction: $H_2(g) + I_2(g) \rightarrow 2 HI(g)$. Which of the following is true.
 - A) ΔH° is negative, and $\Delta H^{\circ} = \Delta E^{\circ}$
 - B) ΔH° is positive, and $\Delta H^{\circ} = \Delta E^{\circ}$
 - C) ΔH° is negative, and $\Delta H^{\circ} \neq \Delta E^{\circ}$
 - D) ΔH° is positive, and $\Delta H^{\circ} \neq \Delta E^{\circ}$
 - E) $\Delta H^{\circ}_{rxn} = \Delta H^{\circ}_{f} (HI(g))$
- 13. The heat of combustion of one mole of solid napthalene ($C_{10}H_8$) to liquid water and gaseous carbon dioxide is -5162 kJ. Calculate the standard heat of formation of napthalene.
 - A) $1.02 \text{ x } 10^4 \text{ kJ/mol}$
 - B) 2051 kJ/mol
 - C) 259 kJ/mol
 - D) 84 kJ/mol
 - E) -168 kJ/mol
- 12. Which of the following reactions is not exothermic?
 - A) $2H_2(g) + O_2(g) \rightarrow 2H_2O(g)$
 - B) $Ba(OH)_2 \cdot 8H_2O(s) + 2NH_4Cl(s) \rightarrow BaCl_2(aq) + 10H_2O(l) + 2NH_3(aq)$
 - C) $HCl(aq) + NaOH(aq) \rightarrow NaCl(aq) + H_2O(l)$
 - D) $2C_4H_{10}(g) + 13O_2(g) \rightarrow 8CO_2(g) + 10H_2O(g)$
 - E) $Al(s) + Br_2(l) \rightarrow AlBr_3(s)$
- 13. The addition of 3.31 kJ of heat to a 300. g sample of mercury at 19.0 °C caused the temperature to rise to 99.0 °C. What is the specific heat of mercury?
 - A) $41.4 \frac{J}{g.°C}$ B) $7.25 \frac{J}{g.°C}$ C) $0.581 \frac{J}{g.°C}$ D) $0.138 \frac{J}{g.°C}$ E) $0.111 \frac{J}{g.°C}$

- 14. Which of the following equations is an example of a standard formation reaction?
 - A) $Ca(s) + CO(g) + O_2(g) \rightarrow CaCO_3(s)$ B) $HgO(s) \rightarrow Hg(l) + O_2(g)$ C) $2C(s) + O_2(g) \rightarrow 2CO(g)$ D) $2Cl(g) \rightarrow Cl_2(g)$ E) $Cl_2(g) + \frac{1}{2}O_2(g) \rightarrow Cl_2O(g)$
- 15. For which of the following reactions is $\Delta E = \Delta H$?
 - A) $HgO(s) \rightarrow Hg(l) + O_2(g)$ B) $H_2(g) + Cl_2(g) \rightarrow 2HCl(g)$ C) $2NH_4Cl(s) \rightarrow N_2(g) + 4H_2(g) + Cl_2(g)$ D) $N_2(g) + 2O_2(g) \rightarrow 2NO_2(g)$ E) $CH_4(g) + 2O_2(g) \rightarrow CO_2(g) + 2H_2O(l)$
- 9. Which of the following elements has the largest ionization energy?
 - A) 0
 - B) B
 - C) I
 - D) Cs
 - E) S
- 10. Which of the following is isoelectronic with Ba^{2+} ?
 - A) Ca²⁺
 - B) La²⁺
 - C) O^{2–}
 - D) I-
 - E) Rn
- 11. Which of the following has the smallest radius?
 - A) N
 - B) B
 - C) Al
 - D) Be
 - E) C

13. A possible set of quantum numbers for the last electron added to complete the ground state electron configuration for a neutral zinc atom is,

	п	l	m_l	m_s
A)	3	2	+2	$-\frac{1}{2}$
B)	4	1	-1	$-\frac{1}{2}$
C)	3	1	0	$+\frac{1}{2}$
D)	4	3	0	$+\frac{1}{2}$
E)	4	2	-2	$+\frac{1}{2}$

15. An atom of the element X has the electron configuration

1s²2s²2p⁶3s²3p³

The compound most likely to form with Br is,

A) XBr
B) XBr₂
C) X₂Br₃
D) XBr₃
E) X₃Br₂

16. What is the electron configuration of a Co^{3+} ion?

- A) [Ar]4d⁶
- B) [Ar]3d⁶
- C) [Ar]4s²3d¹⁰
- D) $[Ar]4s^23d^4$
- E) [Ar]4s²3d⁷